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Abstract. 

We investigate in this paper the time evolution and the composition in terms of applications 
of traffic in two different networks, namely the Renater network, dedicated to the French 
academic and research community, and the France Télécom backbone network supporting 
commercial traffic. For each network, we present the time evolution of traffic in terms of 
applications, the associated pie charts for global results, as well as, for each detected 
application, its flow size distribution, that should have an impact on the traffic nature (self-
similarity or long range dependence due to the heavy tail of flow size distribution). Based on 
these results, this paper presents a discussion on the differences between academic and 
commercial traffic in terms of usage, as well as possible solutions against LRD and its 
associated degradation of network performance. For traffic analysis, we propose a new 
method of classifying traffic according to applications, which relies on applicative protocols 
recognition instead on the IANA ports numbers. 
 

Résumé. 
 
Nous étudions dans cet article l’évolution au cours du temps et la composition du trafic en 
termes d’applications dans les deux réseaux que sont Rénater, utilisé par la communauté 
académique et de recherche française, et le réseau France télécom qui transporte du trafic 
commercial. Pour chaque réseau, nous présentons l’évolution au cours du temps de la 
composition de trafic en termes d’applications, les camemberts associés pour présenter les 
résultats globaux ainsi que, pour chaque application observée, la distribution des tailles de 
ses flux qui ont un impact sur les caractéristiques du trafic (auto-similarité ou dépendance 
longue dues à des distributions de tailles de flux à décroissance lente). A partir de ces 
résultats, cet article étudie les différences entre les trafics académique et commercial en 
termes d’usages, ainsi que des solutions pour réduire la LRD est les baisses de performance 
réseau qu’elle induit. A noter également que pour l’analyse du trafic, nous proposons une 
nouvelle méthode de classification du trafic par application qui repose sur la reconnaissance 
des protocoles applicatifs plutôt que sur les numéros de port IANA. 

 
 
1. Introduction 
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While the Internet was originally used by the scientific community for exchanging electronic mails, text 
or binary data without any strong delay requirements, the usage of this network has been rapidly changing 
for the past ten years. As a corollary of its immense commercial success, in particular through the massive 
deployment of residential broadband access via ADSL lines, the Internet has nowadays to support a 
variety of applications, which did not even exist when the basic IP protocols were designed. This is 
particularly true for many applications, which are currently utmost popular on the Internet, such as peer-
to-peer (P2P) applications for exchanging music and movies, Video on Demand (VoD), distributed 
games, video conferencing, IP telephony, etc.  

These new applications have very different requirements in terms of Quality of Service, 
especially with regard to information transfer delay through the network. Moreover, those applications 
give rise to various traffic patterns, which may have a great impact on the behavior and the performance 
of the network (burstiness, elasticity, streaming, etc.). Designing mechanisms, protocols and architectures 
able to meet the quality requirements of new multimedia applications is a very challenging issue in the 
evolution of the Internet. Yet, as a preliminary task, it is essential to exactly know which applications give 
rise to traffic in current networks. This is of great importance for network engineers, administrators and of 
course researchers when designing new traffic management policies. 

Estimating the distribution of traffic among applications is one of the key contributions of 
monitoring and measurement systems. However, the applicative classification is nowadays often a tricky 
task as more and more applications use encryption (for instance in an encrypted IPSEC tunnel), or use 
dynamic port numbers. This greatly complicates the recognition of applications generating traffic, in 
particular through the analysis of layer-4 port numbers. The Metropolis project, funded by the French 
council for research in telecommunications (RNRT), has been addressing the above issue for the last three 
years, and has proposed a new methodology for accurately classifying traffic among the different 
applications, based on the recognition of the application protocol, thus making the classification process 
insensitive to dynamic port changes. 
 In this paper, we present results obtained, in the framework of the Metropolis project, for two 
different networks with different characteristics in terms of usage and users. The Metropolis project has 
been monitoring for three years several links of the Renater network (the French network for education 
and research)4. In parallel, France Télécom has carried out several measurement experiments in its 
different networks for learning the characteristics of IP traffic and the usage of customers in a commercial 
environment. In this paper, some results based on measurements from on a high speed link of the France 
Télécom backbone network are presented. This paper thus describes results on both an academic and a 
commercial network, enabling a comparison in terms of usage and traffic characteristics.  
 This paper is organized as follows: in Section 2, we describe in details the networks which are 
monitored as well as the measurement points where traffic has been captured. Section 2 also presents the 
new classification method designed for the Metropolis project and based on the recognition of the 
protocol used by an application. Measurement and classification results are then shown in Section 3, 
focusing on the difference between academic and commercial networks in terms of usage. Section 4 
concludes this paper and presents future work. 
 
 
2. Classification methodology and description of monitored networks 
 
2.1. Experimental setting 
 

                                                 
4 Renater interconnects all universities, public research labs, some schools, as well as some industrial partners 
(depending on the projects in relation with academia they are involved in). 
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The Metropolis project, started in 2001, gathers most of the public research in networking and metrology 
in France. In terms of measurement techniques, Metropolis aims at combining active and passive 
measurements in order to obtain the best of both techniques. The monitoring and measurement platform 
has been designed and deployed in the Renater network. This platform consists of: 

• Passive microscopic monitoring devices equipped with the famous DAG card (designed and provided 
by the University of Waikato and Endace in New Zealand), which collects every packet transmitted 
on the monitored link, including a very accurate GPS timestamp [CLE00]; 

• Active measurement devices. Active probes rely on the RIPE boxes that have been extended to 
support the NIMI software as well as a self designed and developed measurement software 
environment called MetroMI. 

 
The Metropolis monitoring and measurement platform is depicted in Figure 1. Even if active 

measurement results are also available, we focus in this paper on passive measurements only, specifically 
traffic traces captured in Paris (University of Paris 6) and Toulouse. 

In addition, we present results obtained by analyzing traffic measurements from the France Télécom 
network. Traffic traces are captured on a high speed (1 Gbit/s) link connecting several ADSL areas to the 
France Télécom IP backbone network. Only traffic from the backbone in direction to the ADSL areas 
(downstream traffic) is analyzed. The reason for limiting the analysis to downstream traffic is that 
downlink bit rates are much more various and much higher than the uplink bit rates. Depending upon 
customer's subscription, the downstream bit rates vary from 128 Kbit/s up to 1 Mbit/s, the majority of 
customers having a 512 Kbit/s subscription. The upstream bit rates for the experiment described in this 
paper and carried out in 2005 are then most of the time limited to 128 Kbit/s. Note that with the 
introduction of new services such as video on demand, visiotelephony, etc., the access bit rates are rapidly 
changing through new commercial offers by France Télécom. The measurement device was installed in 
derivation of the transmission link and performed an on line analysis of the first 200 bytes of IP packets. 
We were thus able to determine to which micro-flow, identified by the 5-uple (source IP @, destination 
IP @, source port, destination port, protocol type), a packet belongs to as well as the application 
generating the IP packet. 
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Figure 1. Metropolis monitoring and measurement platform. 

  
2.2. Classification method 
 
Our method for classifying packets and flows among applications is performed by using the QoSMOS5 
Traffic Designer (TD) box [QoS04]. Traffic Designer is a traffic monitoring box, namely a PC equipped 
with a bypass Ethernet card, which performs a real time analysis of ongoing packets. The TD software 
then provides macroscopic statistics of traffic. The monitoring box is also designed for re-shaping traffic 
according to measurements and the traffic policy defined by the network manager. This functionality is 
not used in the work presented in this paper. Only the monitoring facility is of interest and more 
specifically the capability of classifying traffic via the recognition of protocols used by applications. The 
recognition mechanism relies on the payload analysis of packets. First, flows are separated using the 
classical 5-tuple information (IP addresses, transport protocol, transport ports). Then the content of 
packets belonging to a given flow is analyzed until the flow is associated with an application. A flow is 
said to belong to a specific application only if the syntax of the data exchanged between the two TCP 
peers matches to the application syntax. For instance if a flow is transmitted on port 21 and contains 
something like "GET /index.html HTTP/1.1", Traffic Designer is going to classify it HTTP whereas a 
standard port classification would describe it as FTP. 

Such a method proves much more efficient than the simple classification method based on 
standard IANA port numbers. Indeed, many applications are now using dynamic port negotiation. Thus, 
even if ports can be used to identify control connections, those flows with dynamically negotiated port 
numbers, used for data transfer, are not going to be recognized. FTP is a very good example of this kind 
of behavior. In this case, the content of control connections is analyzed in order to find out the negotiated 
port numbers and to be able to subsequently classify data flows. For instance, if a flow is recognized as an 
FTP control flow, the classification engine will search for packets containing the “PORT” command 
which gives information on the setup of the data connection. In addition, more and more applications are 
                                                 
5 QoSMOS is a spin-off of LIP6 laboratory located in Paris. 
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not using standard ports at all. Finally, some applications may even use a well-known port for a different 
usage, for instance in order to bypass firewall rules. 

The main advantage of using an applicative classification tool is that it significantly reduces the 
amount of non-classified traffic. Thus, for the traffic traces from the Renater network, 30 % of traffic 
would not be classifiable when using standard port numbers, compared to less than 5 % when using 
Traffic Designer. 

Since the QoSMOS TD can be run only with Fast Ethernet cards, we solve the problem of 
monitoring Gbit/s transmission link by using another QoSMOS software called TD player which allows 
us to replay traffic collected with DAG passive monitoring boxes. DAG systems are able to collect all 
packets on gigabit links without skipping one of them, and then by replaying this traffic trace at an 
acceptable speed for the TD box, we can get a very accurate classification of traffic according to 
applications. The following section presents the results obtained via the above measurement method on 
traffic traces from Renater and the France Télécom IP network. 
 
3. Classification results 
 
This section presents the results obtained by monitoring and classifying traffic among applications. We 
give some temporal breakdowns of the evolution of traffic distribution, as well as pie charts for those 
readers who are only interested in global cumulative results. All these classification results are presented 
in terms of number of bytes, packets and flows (e.g., TCP connections). Also, this section gives the flow 
size distribution for all applications, which are detected in analyzed traffic. This is motivated by the fact 
that references [PAR96] and [PAR97] show that the change of the distribution of flow size, which is 
becoming more and more heavy tailed, has a strong impact on the nature of traffic, in particular by giving 
rise possibly to self-similarity and at least to long range dependence properties (LRD) [OWE04]. It is then 
of particular interest to check whether these observations hold for all traffic types.  
 
3.1 Data from Renater POP in Jussieu (Paris) 
 
For collecting the data described in this paper, we captured several traffic traces in the Jussieu campus 
network. All traces gave rise almost the same amounts of data, packets and flows, as well as the same 
distribution of traffic among applications. We then arbitrarily selected one of them, and this section 
provides the breakdowns and pie charts obtained via our applicative classification methodology and tools 
described in the previous section. The traffic trace has been captured by using a DAG card for both 
incoming and outgoing traffic. To determine the direction in which packets were sent (i.e., from the 
university network or towards this network), we have used the MAC addresses of the edge router. The 
measurement experiment for the Jussieu campus network is globally characterized as follows (see Table 
1): 

• Capture date: Monday October 11th, 2004 
• Location of the measurement device: campus network of Jussieu 
• Start time: 2:50 pm 
• Duration: 3600 seconds 
• Total number of packets: 80,437,378  
• Total number of flows: 2,322,931 
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Table 1. Number of flows of main Internet protocols. 

Name Flows Flow Ratio Volume Ratio 
TCP 1,745,870 75.2 % 92 % 
UDP 492,732 21.2 % 7.4 % 
ICMP 84,269 3.6 % 0 % 
ESP 28 0 % 0 % 
GRE 15 0 % 0.6 % 
IPv6 7 0 % 0 % 
IGMP 7 0 % 0 % 
PIM 2 0 % 0 % 
HOPOPT 1 0 % 0 % 

  
Since we want to analyze full flows in order to get an accurate flow size distribution according to 

applications, we have to focus on TCP flows starting and finishing within the experiment time window. A 
flow is said to have ended if its last TCP flags matches a connection termination (either gracefully with a 
FIN – ACK sequence or abruptly with a RST) or if no packets have been seen for this flow for more than 
4 minutes. 

As an indication, flows started before the beginning of trace represent 0.5 % of TCP flows (20 % 
of the total volume), whereas flows still active after the last packet of the trace represent 0.6 % of the 
flows (10 % of the volume). While the difference in terms of flows is negligible, the gap in terms of 
volume is relatively important. This bias explains why the traffic rate seems to be small at the beginning 
of the traces in the graphs. 
 Figures 2 and 3 present the different breakdowns and pie charts obtained via the classification 
process of traffic among applications. Figure 2 gives for all applications the total amount of traffic in 
terms of bytes, packets and flows. The same is shown in Figure 3 by considering family of applications. 
We call an application family all applications that have the same purpose: for instance, Kazaa and E-
donkey belong to the P2P family. 
 

Outgoing data Incoming dataOutgoing data Incoming data

 
Figure 2. Global amount of traffic per application (outgoing and incoming data). These pie charts represent the 
distribution of traffic among applications in term of bytes 
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Outgoing data Incoming dataOutgoing data Incoming data

 
Figure 3. Global amount of data per applicationl families (outgoing and incoming data). These pie charts represent 
the distribution of traffic among family of applications in term of bytes 

 
Figures 4 and 5 depict over the time evolution of the bit rate (in Byte/s) per application and family 

of applications, respectively. Figure 6 gives the bit rate in packet/s. Figure 7 shows the application flow 
rate in flow/s. 

 

Outgoing data Incoming dataftp

ftp

Outgoing data Incoming dataftp

ftp

 
Figure 4. Application throughput breakdown in Bytes/s (outgoing and incoming data). These breakdowns represent 
the time evolution of the bit rate of the principal applications of the Jussieu’s traffic 

 

Outgoing data Incoming dataOutgoing data Incoming data

 
Figure 5. Application family throughput breakdown in Bytes /s (outgoing and incoming data). These breakdowns 
represent the time evolution of the bit rate of the principal contributing families of applications of the Jussieu’s 
traffic. 
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Figure 6: Application packet rate breakdown (in Packets/s) (outgoing and incoming data). These breakdowns 
represent the time evolution of the bit rate in packet/s due to the main contributing applications of the Jussieu’s 
traffic 
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Figure 7. Application flow rate breakdown (in flows /s). This breakdown represents the time evolution of the 
number of new flows due to the main contributing applications of the Jussieu’s traffic. ip.tcp flows are flows where 
no application data was exchanged (for instance connection attempts that did not go through). 

 
 Figure 8 represents the flow size distribution for each application with a log-log scale. The 
objective is precisely to evaluate whether flow size distributions are heavy tailed or not. Such a 
characteristic is important as heavy tailed distributions of flow sizes infer LRD and might reveal self-
similarity properties of traffic. These two properties have been shown in the literature to impact many 
performance issues for the network. In fact, Figure 8 more or less confirms that applications which 
generate long flows (a.k.a. elephants) likely have a heavy tailed flow size distribution, as already 
demonstrated in [PAR96]. In particular, it is important to note that the most heavy-tailed distributions are 
not those of P2P or FTP applications, but those of streaming oriented applications (based on RTSP), 
terminal applications, and chat. Nevertheless, it seems that in spite of these differences in flow size 
distributions, P2P and File transfer applications have more impact on LRD than other applications (see 
table 2).  

For more information on LRD (Long Range dependence), the reader can refer to the huge existing 
literature, for example [PAR00] [LEL93] [WIL95] To quantitatively characterize the LRD level of 
current Internet traffic, we have performed a wavelet based decomposition of traffic traces. Interested 
readers can refer to [ABR98] for details on the wavelet based method used in this paper, as well as on the 



 9

LDestimate tool that provides LRD diagrams. From these LRD diagrams it is then possible to compute 
the Hurst parameter (H), which characterizes the long range dependence of the traffic process. The 
parameter H has in general a value between 0.5 and 1: The value 0.5 indicates that there is no dependence 
in the process. The value 1 indicates very strong long range dependence. Sometimes, the LDestimate tool 
yields H values larger than 1. This is due to approximation and roud off erros when the number of values 
is not sufficient for having small confidence intervals. Nevertheless, even if the value is not very accurate, 
the qualitative indication for strong LRD still holds. 

Results in table 3 show that even if Web distribution is not as heavy-tailed as the global 
distribution, the LRD level is really higher. Moreover, when we analyze Web traffic, we can notice that 
0.00058 % of the total number of Web flows generate more than 37.3 % of the total amount of Web 
traffic (cf. table 3 for details). Hence, it is clear that Web clients observed in this trace have not only 
browsed Web pages. In fact, a more detailed analysis shows that Web clients have downloaded large files, 
which means that HTTP protocol is used as a FTP-like protocol. Table 4 generalizes this result for the 
whole set of flows (and not only web flows). In fact, LRD is introduced by the largest flows, 
independently of the associated application. As demonstrated in [PAR97], those flows are responsible for 
the most significant degradation of network performance. 

 
Figure 8. Flow size distribution for each application 
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Table 2. LRD inferred by some application families 
Application family LRD (Hurst factor) 
Web traffic 0.905 
P2P traffic 1.010 
Terminal traffic 1.15 
FTP traffic 1.245 

 
Table 3. Relation between file sizes and LRD for web traffic 

 Volume 
(%) 

Number of flows
(%) 

LRD Level 
(Hurst value)

Total Web traffic 14.4 GBytes 
(100%) 

1 167 759 
(100%) 

H=0.905 

Traffic due to large web 
flows (size> 1 MBytes) 

5.31 GBytes 
(37.3%) 

679 
(0.00058%) 

H=1.011 

Traffic due to the 100 
largest Web flows 

3.99 GBytes 
(27.7%) 

100 
(0.000086%) 

H=1.201 

 
Table 4. Relation between file size and LRD for all flows 

Flow sizes 
(MBytes) 

Total 
volume 
(GBytes) 

Total volume 
percentage 
(%) 

LRD level 
(Hurst 
value) 

> 0 43.4 100% 0.855 
Between 1 and 10 6.56 15.1% 0.814 
Between 10 and 50 5.34 12.3% 0.834 
Between 50 and 100 1.91 4.4% 0.873 
Between 100 and 300 5.39 12.4% 1.03 
> 300 14.1 32.5% 1.07 

 
3.2. Data from France Télécom’s network (link connecting several ADSL areas in Paris) 
 
This section presents the same analysis as that for Jussieu’s traces, but for a France Télécom trace. The 
global characteristics, in particular the contribution in terms of flows of the different protocols (see Table 
5), are as follows: 

• Capture date: Thursday October 15th, 2004 
• Location of the measurement device: in derivation of a high speed link connecting different 

ADSL areas in Paris; only downstream traffic is observed 
• Start time: 19:01 PM 
• Duration: 1300 seconds 
• Total number of packets: 134,434,541 
• Total number of flows: 9,636,105 

 

Mis en forme :
Paragraphes solidaires,
Lignes solidaires
Mis en forme :
Paragraphes solidaires,
Lignes solidaires
Mis en forme :
Paragraphes solidaires,
Lignes solidaires
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Table 5: Number of flows of main Internet protocols: 

Protocol Number of Flows Flow Ratio Volume Ratio 
ICMP   121,378 1.26 % 0.04 % 
TCP 4,805,502 49.87 % 87.85 % 
UDP   4,709,060 48.87 % 11.95 % 
ESP 91 0 % 0.14 % 
GRE 38 0 % 0.03 % 
IPv6   26 0 % 0 % 
AH 10 0 % 0 % 

Figures 9 and 10 give the contributions to the global volume of the different applications and 
families of applications, as defined in the previous section. It clearly appears from these two figures that 
P2P applications have significant contribution to the global load. This is the key difference between 
commercial and campus traffic. In campus traffic, as observed in the traffic trace of the Jussieu campus 
network, P2P traffic is almost inexistent. In a commercial network, P2P has a major impact. We shall see 
that this point is important when examining flow size distributions. 
 

 
Figure 9. Global amount of data per application (incoming data). This histogram represents the distribution of 
traffic among applications in term of bytes 

 

 
Figure 10. Global amount of data per protocol family (incoming data). This histrogram represents the distribution of 
traffic among family of applications in term of bytes 
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Figures 11, 12, and 13 depict the bit rate for applications and families of applications. These 
figures show that the global bit rate is roughly stationary; there is no evidence of a significant drift in the 
bit rate processes. It is also worth noting that the proportion of P2P traffic is increasing so that its 
contribution to the global load becomes more and more significant. Several traffic traces show that P2P 
traffic is dominating in the evening (say, between 9:00 pm and 12:00 pm). Figure 14 depicts the flow rate; 
it shows that the situation is stable during the observation period. It clearly appears from this figure that 
the number of TCP flows is very high and that a large number of flows do not lead to the establishment of 
TCP connections. This phenomenon is characteristic of P2P protocols. Those protocols indeed generate a 
huge amount of signaling in the form of small flows of a few packets (a.k.a. as mice), related to file 
search or maintenance in P2P networks. Moreover, since the allocation of IP addresses for ADSL 
customers is dynamic, many peers outside the observed ADSL areas try to contact ADSL peers, when 
they are not active or not connected.  

 

ftpftp

 
Figure 11. Application throughput breakdown in Bytes /s (incoming data). This breakdown represents the time 
evolution of the byte traffic due to the main contributing applications of the Fontenay’s traffic 
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Figure 12. Application family throughput breakdown in Bytes/s (incoming data). This breakdown represents the 
evolution of the byte traffic during time due to the main contributing families of applications of the Fontenay’s 
traffic 
 

ftpftp

 
Figure 13: Application packet rate breakdown (in Packets/s) (incoming data). This breakdown represents the 
evolution of the packet traffic during time due to the main contributing applications of the Fontenay’s traffic.  
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Figure 14. Application flow rate breakdown (in flows /s) (incoming data). This breakdown represents the evolution 
of the number of new flows during time due to the main contributing applications of the Fontenay’s traffic. tcp  
flows are flows where no application data was exchanged (for instance connection attempts that did not go through). 

 

Figure 15 displays the flow size distributions for the different applications. It is worth noting that 
the distributions are quite different from those obtained for the traffic trace from the Jussieu campus 
network. In log-log scale, the distributions cannot be easily approximated by straight lines. A finer 
analysis (see [BEN04]) shows that the tails of the distributions can be approximated by Weibullian 
distributions. In addition, the distributions of the flow size for P2P applications exhibit a bimodal 
behavior. By examining more precisely the composition of P2P traffic, we come up with the conclusion 
(see [BEN04]) that a huge number of flows are very small, comprising less than 8 packets. As mentioned 
above, these flows are due to signaling in P2P networks (file search or maintenance). In fact, for a finer 
analysis, we are led to separate small flows (mice) from long flows (elephants). Because most recent P2P 
protocols, in particular eDonkey, divide long files into smaller files (chunks), which can be downloaded 
asynchronously and in parallel by peers, the predominance of P2P traffic in commercial networks tends to 
smooth traffic, in particular to eliminate long range dependence and a fortiori self-similarity. This is 
illustrated on figure 16 were it clearly appears that the flow size distribution of eDonkey traffic is less 
heavy than the one of Kazaa. By measuring the Hurst parameter, we have obtained a value equal to 0.797 
for eDonkey traffic and a value equal to 1.01 for Kazaa, which shows better performance of the network 
for recent P2P protocols than for previous ones. 



 15

 
Figure 15. Flow size distribution for each application in France Télécom trace. 

 
Figure 16. Flow size distribution for Kazaa vs. e-donkey flows 
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4. Conclusion 
 
This paper investigates the distribution of traffic among applications in two different networks: a campus 
and a commercial network. For breakdowns of the distribution of traffic among applications, we have 
proposed a new methodology based on collecting traffic traces thanks to DAG equipments, and then on 
classifying traffic by using the QoSMOS TD box, which relies on applicative protocols recognition. We 
have exhibited some major difference in the usage of the two networks. The Renater network is devoted 
to education and research, excluding P2P exchanges that are not related to educational or research 
purposes. As far as we know, network administrators on the campus do their best to enforce this policy. In 
addition, since the campus of Jussieu in Paris is hosting one of the main FTP servers in France, mirroring 
many FTP servers in the world (GNU, Linux, etc.), the application generating the prevalent part of traffic 
is FTP. At the opposite, it clearly appears that the main part of traffic in commercial networks (such as 
France Télécom's networks) consists of P2P traffic.  

It thus clearly appears from this paper that there does not exist a single type of IP traffic. While 
LRD and self-similarity were observed in LAN traffic of Bellcore in the mid 1990's, the composition of 
traffic in today's IP networks is quite different from the one in LANs in the mid 1990s. Hence, the 
conclusions valid for these kinds of networks at that time might not more be valid today. While LRD 
phenomena can still be observed in campus networks with a predominance of Web traffic, there is no 
evidence for this phenomenon in commercial networks because of the smoothing effect of P2P protocols.   
 The most important message of this work is to draw attention to the fact that traffic analysis 
should be based on flows and applications instead on the packet level. Analyzing traffic characteristics 
per application, such as correlation, LRD, self-similarity, etc. helps pointing out the applications and 
usage actually generating traffic as well as QoS and performance issues in the Internet. We expect, based 
on these results, to propose new solutions for improving network QoS and performance, as well as the 
way it is managed. The first result in this direction deals with segmenting large files before transmitting 
them onto the Internet. But other approaches are also investigated, for instance the ones proposing to 
replace TCP, which is responsible of performance degradation when it is used for transmitting large flows 
on high bandwidth networks [OWE04]. Some new protocols aiming at replacing TCP in the Internet are 
under study, such as DCCP at the IETF for instance, but describing such a protocol and its benefits is not 
in the scope of the present paper. It surely deserves a full paper for showing how DCCP succeeds in 
reducing LRD and performance degradation when it is used for transmitting large files. 
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